Fiscal shocks and the exchange rate*

Giorgio Di Giorgio
LUISS Guido Carli

Salvatore Nisticò
Sapienza University of Rome

Guido Traficante
European University of Rome

January 21, 2014

Abstract

This paper shows that the result implied by the Redux model of Obstfeld and Rogoff (1995) – that the exchange rate depreciates in response to balanced-budget fiscal expansions – is completely reversed once we account for two key features of modern New Open Economy Macroeconomics models: home bias in public consumption and endogenous monetary policy.

*We would like to thank participants at the “XXII International Conference on Money, Banking and Finance - Rome, December 2013”. Usual disclaimers apply.

JEL classification: E43, E44, E50, E52.

Keywords: Redux Model, Exchange Rate, Fiscal Shocks, Endogenous Monetary and Fiscal Policy.
1 Introduction

The financial crisis that led the world economy into recession in 2009 stimulated a revived interest in the role of fiscal policy as a stabilization tool. Relevant discretionary fiscal interventions have been undertaken in the US and in many other industrialized countries, often coupled with expansionary monetary policies. Interestingly, however, although the effects of fiscal shocks and their international transmission have long been investigated in the literature not much consensus was achieved.

In particular, the modern intertemporal approach to the economics of exchange rates obtains results that are at odds with the well known implications of the static open-economy version of the IS-LM model developed by Mundell and Fleming. The seminal paper in this respect is Obstfeld and Rogoff (1995). In their Redux model a balanced-budget fiscal expansion – where government spending is symmetrically distributed on domestic and foreign goods – depreciates the exchange rate. Within the same framework, the alternative assumption of complete home bias in government consumption leads to a null effect on the exchange rate (Ganelli, 2005a).

In this paper, we show that the above results critically depend on the assumption of exogenous money-supply processes. Indeed, we find that the exchange rate appreciates once we account for endogenous monetary policy and (even moderate degrees of) home bias in public consumption, two key features of modern New Open Economy Macroeconomics (NOEM) models.

The analysis of fiscal policy, in general, has been somehow delayed with respect to studies investigating the role of monetary policy in the NOEM framework. This is largely due to the fact that Ricardian equivalence holds in the benchmark Redux model. A natural implication is that only balanced-budget policies can be studied, while debt policies have no relevance. Only recently, the standard two-country framework based on the Representative Agent (RA) model has been extended to account for agents’ heterogeneity, turnover in financial markets and some form of market imperfection or incompleteness that allow to depart from Ricardian equivalence and investigate fiscal policies more in detail (see Ganelli, 2005b, Cavallo and Ghironi, 2002, Di Giorgio and Nisticò, 2007, 2013). These advances allow a comparison between the outcomes of fiscal shocks in the static Mundell–Fleming model and the intertemporal approach used in the modern literature (see Ganelli, 2005b) and a better understanding of the role played by different factors in affecting the exchange-rate response.

An additional contribution of our paper, in this respect, is to study the effects of fiscal policy in a two-country DSGE model where agents are heterogeneous according to the Blanchard-Yaari OLG structure, along the lines of Di Giorgio and Nisticò (2007, 2013).
In this framework, Ricardian equivalence does not hold, fiscal policy is allowed to follow counter-cyclical deficit feedback rules à la Galí and Perotti (2003) and monetary policy follows a standard interest-rate Taylor Rule. We clearly highlight the distinct role played by home bias in public consumption and endogenous monetary policy on exchange rate dynamics. The main result obtained in our generalized version of the Redux model goes through, and the exchange rate appreciates following a home-biased fiscal expansion. Moreover, we show that the exchange-rate appreciation occurs regardless of the financing (tax versus debt) of the fiscal expansion, differently from Ganelli (2005b).

The paper is organized as follows. In Section 2, we generalize the Redux model to study the role that home bias in government consumption and endogenous monetary policy play in determining the effects of balanced-budget fiscal shocks on the exchange rate. In Section 3 we develop a fully specified non-Ricardian two-country DSGE model of the business cycle and investigate the effects also of non-balanced-budget fiscal shocks on key macroeconomic variables under endogenous monetary and fiscal policies. Section 4 concludes.

2 A simple framework: generalizing the Redux model.

In this section we extend the simple Redux model of Obstfeld and Rogoff (1995) to study the interplay between home bias in public spending and endogenous monetary policy in transmitting fiscal shocks to the exchange rate.\(^1\)

The Home country consists of a continuum of “Yeoman Farmer” households on the interval \([0, n]\), indexed by \(h\), while Foreign agents are on the interval \((n, 1]\), indexed by \(f\). Domestic households choose consumption \(C\), real money balances \(M/P\) and work effort in the production of output \(y\), in order to maximize\(^2\)

\[
\sum_{k=0}^{\infty} \beta^k \left[\log C_{t+k} + \chi \log \left(\frac{M_{t+k}}{P_{t+k}} \right) - \frac{\kappa}{2} y_{t+k}(h)^2 \right]
\]

subject to the flow budget constraint

\[
P_tB_t + M_t = P_t \left(1 + r_{t-1} \right) B_{t-1} + M_{t-1} + P_t(h)y_t(h) - P_tC_t - P_tT_t \tag{1}
\]

where \(B_{t-1}\) and \(r_{t-1}\) denote, respectively, the stock of bonds carried over by home residents from period \(t - 1\), and the real interest rate earned on bonds between \(t - 1\) and \(t\), while

\(^1\)Since the model builds on Obstfeld and Rogoff (1995) and Ganelli (2005a), in the paper we focus on the distinctive elements of our setup, and refer the reader to the aforementioned papers for details about the other ingredients.

\(^2\)Foreign households face a symmetric problem.

2
are real taxes. The private consumption index \(C \) (\(C^* \) in the Foreign country) is a Dixit-
Stiglitz aggregator of all the brands produced worldwide, where domestic and foreign goods
are treated symmetrically:\(^3\)

\[
C = \left[\int_0^1 c(z)^{\frac{\theta-1}{\theta}} dz \right]^{\frac{\theta}{\theta-1}}
\]

(2)
in which \(\theta > 1 \) is the elasticity of substitution between any two brands of goods, either
domestic of foreign, and \(z \in [0,1] \). The optimal intra-temporal allocation, then, implies the
following brand-specific private demand

\[
c(z) = \left(\frac{p(z)}{P} \right)^{-\theta} C^W,
\]

where \(C^W = nC + (1-n)C^* \) is world private consumption and \(P = \left(\int_0^1 p(z)^{1-\theta} dz \right)^{\frac{1}{1-\theta}} \)
is the domestic consumer-price index.

2.1 Fiscal policy and home-bias in public consumption.

Fiscal policy is conducted by setting the amount of public consumption \(G \), which the gov-
ernment finances through lump-sum taxes \(T \).\(^4\) In particular, we assume that the government
of each country consumes composite bundles of both domestic and foreign goods:

\[
G = \left[v^{1/\theta} G_H^{\frac{\theta-1}{\theta}} + (1-v)^{1/\theta} G_F^{\frac{\theta-1}{\theta}} \right]^{\frac{\theta}{\theta-1}}
\]

(3)

\[
G^* = \left[v^{*1/\theta} G_H^{\frac{\theta-1}{\theta}} + (1-v^*)^{1/\theta} G_F^{\frac{\theta-1}{\theta}} \right]^{\frac{\theta}{\theta-1}}
\]

(4)

\(^3\)For comparison with the model of the next Section (and the recent NOEM literature) notice that this
is equivalent to assuming the domestic consumption bundle as the following Dixit-Stiglitz aggregator of
domestic and imported goods

\[
C = \left[n^{1/\theta} C_H^{\frac{\theta-1}{\theta}} + (1-n)^{1/\theta} C_F^{\frac{\theta-1}{\theta}} \right]^{\frac{\theta}{\theta-1}}
\]

where, in turn, the latter are bundled together through

\[
C_H = \left[\frac{1}{n} \left(\int_0^n c(h)^{\frac{\epsilon-1}{\epsilon}} dh \right)^{\frac{1}{1-\epsilon}} \right]^{\frac{\epsilon}{\epsilon-1}}
\]

\[
C_F = \left[\left(\int_0^n c(f)^{\frac{\epsilon-1}{\epsilon}} df \right)^{\frac{1}{1-\epsilon}} \right]^{\frac{\epsilon}{\epsilon-1}}.
\]

The specification of this section, along the lines of Obstfeld and Rogoff (1995) and Ganelli (2005a), implies that
the elasticity of substitution between any two domestic brands is equal to the elasticity of substitution between
domestic and foreign goods: \(\epsilon = \theta \). In this sense, domestic and foreign goods are treated symmetrically in (2).

\(^4\)The specification of the household’s problem studied in this simple model implies Ricardian Equivalence
and does not allow to analyze meaningfully non-Balanced-Budget fiscal policies. We will later relax this assumption.
where the weights are, respectively, \(1 - v = (1 - n)\lambda\) and \(v^* = n\lambda\), with \(\lambda \in [0, 1]\). Moreover:

\[
G_H = \left[\left(\frac{1}{n} \right)^{1/\theta} \int_0^n g(h)^{\theta - 1} \, dh \right]^{\theta/(\theta - 1)} \\
G_F = \left[\left(\frac{1}{1-n} \right)^{1/\theta} \int_n^1 g(f)^{\theta - 1} \, df \right]^{\theta/(\theta - 1)}.
\]

This specification generalizes the Redux model analyzed in Obstfeld and Rogoff (1995), as it allows to account for an arbitrary degree of home bias in public consumption, measured by \((1 - \lambda)\). Indeed, in the Redux model – which is nested in our framework under the calibration \(\lambda = 1\) – there is no home bias, as government spending is defined identically to private consumption, and it is therefore uniformly distributed across domestic and foreign goods, as in (2). We will show that this is one of the two key features behind the Redux model’s implications for the exchange-rate response to fiscal shocks. A second polar case that our framework nests – when \(\lambda = 0\) – is the one studied by Ganelli (2005a), in which public consumption is fully home biased and each government therefore consumes only domestic goods, so that \(G = G_H\) and \(G^* = G_F^*\).

Using the definition of \(v\) and \(v^*\), equation (3) implies the following public demand for brand \(h\):

\[
g(h) = \left(\frac{p(h)}{P_G} \right)^{-\theta} \left[vG + (1 - v)Q^0G^* \right],
\]

where

\[
P_G = \left[vP_H^{1-\theta} + (1 - v) P_F^{1-\theta} \right]^{\frac{1}{1-\theta}}
\]

is the public consumption-based price index,

\[
P_H = \left(\frac{1}{n} \int_0^n p(h)^{1-\theta} \, dh \right)^{\frac{1}{1-\theta}} \\
P_F = \left(\frac{1}{1-n} \int_n^1 p(f)^{1-\theta} \, df \right)^{\frac{1}{1-\theta}}
\]

are the home-currency producer-price indexes of domestic and foreign brands, respectively.

\[\text{5 Analogous equations hold for the foreign country, with appropriate asterisks:}\]

\[
G_H^* = \left[\left(\frac{1}{n} \right)^{1/\theta} \int_0^n g^*(h)^{\theta - 1} \, dh \right]^{\theta/(\theta - 1)} \\
G_F^* = \left[\left(\frac{1}{1-n} \right)^{1/\theta} \int_n^1 g^*(f)^{\theta - 1} \, df \right]^{\theta/(\theta - 1)}.
\]

\[\text{6 For the foreign country, a set of equations analogous to (5)–(7) holds, with appropriate asterisks.}\]
and Q is the real exchange rate for public consumption, given by

$$Q \equiv \frac{\mathcal{E} P^*_G}{P_G} = \left[v^* + (1 - v^*) \left(\frac{P_H}{P_H} \right)^{(1-\theta)} \right]^{1/\theta} \left[v + (1 - v) \left(\frac{P_H}{P_H} \right)^{(1-\theta)} \right]^{1/\theta},$$

in which \mathcal{E} is the nominal exchange rate, defined as the nominal home-currency price of foreign currency. Moreover, we assume that the law of one price holds ($p(z) = \mathcal{E} p^*(z)$, for all $z \in [0, 1]$): given unbiased private consumption bundles, purchasing power parity for the latter holds as well, i.e. $P = \mathcal{E} P^*$. While PPP holds for private consumers, however, it does not for public ones, as the composition of public spending treats asymmetrically domestic and imported goods: $P_G \neq \mathcal{E} P^*_G$ and Q may deviate from 1.

Therefore, the producer of good h faces at time t the following demand curve:

$$y_d^t(h) = \left(\frac{P_t(h)}{P_t} \right)^{-\theta} C^W_t + \left(\frac{P_t(h)}{P^*_G} \right)^{-\theta} [v G_t + (1 - v) Q_t^\theta G^*_t]. \quad (8)$$

Aggregating (8) across domestic brands delivers the aggregate demand for domestic goods:

$$Y_t = \left(\frac{P^*_H}{P_t} \right)^{-\theta} C^W_t + \left(\frac{P^*_H}{P^*_G} \right)^{-\theta} [v G_t + (1 - v) Q_t^\theta G^*_t], \quad (9)$$

while the optimal choice of production effort implies the aggregate supply of domestic goods

$$Y_t^{(\theta+1)/\theta} = \left(\frac{\theta - 1}{\theta \kappa} \right) \frac{1}{C_t} \left[C^W_t + \left(\frac{P^*_G}{P_t} \right)^{\theta} (v G_t + (1 - v) Q_t^\theta G^*_t) \right]^{1/\theta}. \quad (10)$$

We analyze the equilibrium of the model when producer prices are set one period in advance: they are predetermined at time t, but then they fully adjust after one period.\(^7\) We take a log-linear approximation around an initial symmetric steady state where $C_0 = C^*_0$, $\overline{Q}_0 = \overline{Q}^*_0 = B_0 = B^*_0 = 0$. We denote with \hat{x} and \hat{x}^* respectively the short-run and long-run log-linear deviation of variable X from such steady state.\(^8\) In this approximation, since producer prices are preset, consumer prices at time t are proportional to the nominal

\(^7\)This effectively breaks the dynamics of the model in only two periods: the short-run, in which prices do not adjust and output is demand determined, and the long-run, when prices fully adjust and output is therefore supply determined.

\(^8\)Exceptions are variables whose steady state level is zero, like public spending – defined as $\hat{g} \equiv \frac{dG}{C^*_0}$ and $\hat{g}^* \equiv \frac{dG^*}{C^*_0}$ – and net foreign assets – defined as $\hat{b} \equiv \frac{dB}{C^*_0}$ and $\hat{b}^* \equiv \frac{dB^*}{C^*_0}$. Notice that the latter only change in the long-run.
exchange rate \hat{e}, and equilibrium domestic and foreign output are determined by the aggregate demand schedules:

$$\hat{y} = \hat{c}^W + v\hat{g} + (1 - v)\hat{g}^* + \theta(1 - n)\hat{e} \quad (11)$$

$$\hat{y}^* = \hat{c}^W + v^*\hat{g} + (1 - v^*)\hat{g}^* - \theta n\hat{e} \quad (12)$$

which, in relative terms, imply (using again the definition of v and v^*)

$$\hat{y} - \hat{y}^* = (1 - \lambda) (\hat{g} - \hat{g}^*) + \theta \hat{e}. \quad (13)$$

Were prices fully flexible, instead, output would be determined by aggregate supply:

$$(\theta + 1)\hat{y} = -\theta \hat{c} + \hat{c}^W + v\hat{g} + (1 - v)\hat{g}^* \quad (14)$$

$$(\theta + 1)\hat{y}^* = -\theta \hat{c}^* + \hat{c}^W + v^*\hat{g} + (1 - v^*)\hat{g}^*, \quad (15)$$

implying, in relative terms

$$(\theta + 1) (\hat{y} - \hat{y}^*) = -\theta (\hat{c} - \hat{c}^*) + (1 - \lambda) (\hat{g} - \hat{g}^*). \quad (16)$$

Using the balanced-budget restriction in the domestic and foreign budget constraints, we can derive the long-run net foreign asset position of the two countries

$$\hat{b} = \hat{y} - \hat{c} - \hat{g} - (1 - n)\hat{e}$$

$$\hat{b}^* = \hat{y}^* - \hat{c}^* - \hat{g}^* + n\hat{e},$$

which, together with the market clearing condition $n\hat{b} + (1 - n)\hat{b}^* = 0$ and (13), imply

$$\frac{\hat{b}}{1 - n} = (\theta - 1)\hat{e} - (\hat{c} - \hat{c}^*) - \lambda (\hat{g} - \hat{g}^*). \quad (17)$$

Notice that, regardless of the actual degree of home bias in public spending, the relationship linking long-run changes in consumption and net foreign assets is the same as in the Redux model:

$$\hat{c} - \hat{c}^* = \frac{\tau \hat{b}(1 + \theta)}{(1 - n)2\theta}, \quad (18)$$

where $\tau \equiv \frac{1 - \beta}{\beta}$ and $\hat{c} - \hat{c}^* = \hat{c} - \hat{c}^*$, as implied by the cross-country difference of the consumption Euler equations.

Combining (18) with (17) allows to derive an equation describing the equilibrium in the
good market, and the role played by fiscal policy:
\[
\hat{c} = \frac{\theta(1 + \beta) + 1 - \beta}{(1 - \beta)(\theta^2 - 1)} (\hat{c} - \hat{c}^*) + \frac{\lambda}{\theta - 1} (\hat{g} - \hat{g}^*). \tag{19}
\]

This schedule, which we label GG in analogy to Obstfeld and Rogoff (1995), is upward-sloping in the plane \((\hat{c} - \hat{c}^*, \hat{e})\) because relative domestic consumption can rise, ceteris paribus, only if the exchange rate depreciates in the short run, thereby allowing domestic output to increase. Notice that the degree of home bias in public spending determines the extent to which short-run fiscal shocks affect the equilibrium in the goods market and thereby the nominal exchange rate. In the Redux case \((\lambda = 1)\) a domestic fiscal expansion shifts the GG schedule upwards to the maximum extent, thereby inducing depreciation pressures on the nominal exchange rate. In the opposite polar case of complete home bias \((\lambda = 0)\), instead, a fiscal expansion does not affect the goods market – as in Ganelli (2005a) – given that the higher fiscal spending and higher taxation affect only domestic agents.

2.2 Money demand and endogenous monetary policy.

We assume that money supply is controlled – both at home and abroad – through feedback rules of the kind
\[
\begin{align*}
\hat{m} &= \mu - \phi \hat{g} \tag{20} \\
\hat{m}^* &= \mu^* - \phi \hat{g}^*, \tag{21}
\end{align*}
\]

in which a systematic, endogenous component allows short-run money supply to respond counter-cyclically to domestic output.\(^9\) In the feedback rules above, \(\mu\) and \(\mu^*\) are exogenous, permanent monetary policy shocks, and \(\phi > 0\) is the response coefficient.\(^10\)

Notice that, again, this framework generalizes the Redux model, where monetary policy is entirely exogenous, and which is therefore nested under the calibration \(\phi = 0.\)\(^11\) We will show that this is the second key element behind the Redux model’s implications for the exchange rate response to fiscal shocks.

The money-supply differential, therefore, reads:
\[
\hat{m} - \hat{m}^* = (\mu - \mu^*) - \phi(1 - \lambda) (\hat{g} - \hat{g}^*) - \theta \phi \hat{e}, \tag{22}
\]

where we used equation (13) to substitute out relative output.

\(^9\)We consider a feedback rule responding to output only, as domestic prices are rigid in the short run.

\(^10\)For analytical convenience, we assume symmetric response coefficients across countries.

\(^11\)This is also the case in Ganelli (2005a, 2005b).
Moreover, consider the cross-country difference in money demands:

\[\hat{m} - \hat{m}^* - \hat{c} = \hat{c} - \hat{c}^* - \frac{\beta}{1 - \beta} (\overline{c} - \overline{c}) \],

(23)

and use the long-run versions of (22) and (23) to derive the equilibrium long-run exchange rate:

\[\hat{c} = \frac{\mu - \mu^* - (\overline{c} - \overline{c}^*)}{1 + \theta\phi} \].

(24)

Equations (22)–(24) determine the equilibrium in the money market, which is synthetically described by the following MM schedule:

\[\hat{c} = (\mu - \mu^*) - (\overline{c} - \overline{c}^*) \frac{1 + \theta\phi}{1 + \theta\phi} - \frac{\phi(1 - \lambda)(1 - \beta)}{\beta + (1 - \beta)(1 + \theta\phi)} (\hat{g} - \hat{g}^*) \].

(25)

As in Obstfeld and Rogoff (1995) and Ganelli (2005a), the MM schedule is downward-sloping in the plane \((\hat{c} - \hat{c}^*, \hat{c})\) because an increase in relative domestic consumption raises domestic money demand relatively more than abroad, implying ceteris paribus a relative excess demand for domestic currency and thereby an appreciation of the nominal exchange rate. The required appreciation, however, is smaller under endogenous monetary policy, as the ensuing reduction in relative output triggers an increase in relative money supply, restoring the money-market equilibrium more rapidly: the MM is therefore flatter. A permanent increase in relative money supply (increase in \(\mu - \mu^*\)), on the other hand, by inducing a relative excess supply of domestic currency, shifts the MM schedule upwards and implies depreciation pressures.

Differently from Obstfeld and Rogoff (1995) and Ganelli (2005a), however, the feedback component of the monetary policy rules implies that the MM schedule shifts also in response to temporary fiscal shocks, as they induce short-run fluctuations in output and thereby trigger an endogenous response of money supply. Notice that the extent to which the MM shifts depends also on the degree of home bias in public spending, \((1 - \lambda)\). If the latter is uniformly distributed across domestic and foreign goods \((\lambda = 1, \text{ as in the Redux model})\), indeed, the output effects of a short-run fiscal expansion are identical at home and abroad: monetary policy responds symmetrically in the two countries and relative money supply does not change, leaving also the MM unchanged.\(^\text{12}\) For any nonzero degree of home bias in public consumption, however, the endogenous monetary policy response will be asymmetric across countries, and the ensuing change in relative money supply will shift the MM downwards and produce appreciation pressures on the nominal exchange rate, the more so the stronger

\(^{\text{12}}\)The MM schedule would move also in this case if the response coefficients in the monetary policy rules were different across countries.
the home bias.

2.3 Fiscal shocks and the exchange rate.

The simple framework outlined above allows to analyze the effects on the nominal exchange rate of a temporary fiscal expansion, under alternative scenarios, and to study the implications of the two features that we added to the Redux model: home-bias in fiscal spending and endogenous monetary policy.

The first scenario is one in which public consumption is uniformly distributed between domestic and foreign goods – i.e. $\lambda = 1$, like in the Redux model. In this scenario, whether monetary policy is exogenous as in Obstfeld and Rogoff (1995) – i.e. $\phi = 0$ in (20)–(21) – or endogenous – i.e. $\phi > 0$ – is irrelevant for the exchange-rate response to fiscal shocks.

As shown by Obstfeld and Rogoff (1995), indeed, the GG schedule in this case reads as

$$\hat{e} = \theta(1 + \beta) + \frac{1 - \beta}{(1 - \beta)(\theta^2 - 1)} (\hat{c} - \hat{c}^*) + \frac{1}{\theta - 1} (\hat{g} - \hat{g}^*).$$

(26)

On the other hand, equation (25) in this case implies $\hat{y} - \hat{y}^* = \theta \hat{e}$, and the monetary policy rules (in difference terms) therefore read

$$\hat{m} - \hat{m}^* = (\mu - \mu^*) - \theta \phi \hat{e},$$

(27)

which shows that, regardless of the magnitude of the response coefficient ϕ, the relative money supply does not endogenously respond to fiscal shocks, implying that the MM schedule becomes simply

$$\hat{e} = \frac{(\mu - \mu^*) - (\hat{c} - \hat{c}^*)}{1 + \theta \phi}.$$

(28)

Therefore, a balanced-budget government spending shock at Home shifts the GG upwards, as in the Redux model, while it does not move the MM schedule, even if monetary policy is endogenous. This result is graphically shown in Figure 1: a temporary fiscal shock depreciates the exchange rate in equilibrium. Indeed, when public consumption is uniformly distributed among domestic and foreign brands, a government spending shock, regardless of the country of origin, acts as a global shock. As a consequence, output in both countries responds symmetrically and relative money supply therefore does not change – even if the monetary policy makers of the two countries individually respond. 13 Private consumption, on the other hand, falls more at home than abroad, as the tax burden is only borne by domestic

13This depends on the assumption that monetary policy at home and abroad use identical response coefficients ϕ. In the case of asymmetric response coefficients, the specific assumption about whether monetary policy is endogenous or not does, indeed, affect the results.
Figure 1: A temporary expansion in domestic government spending, with zero home bias ($\lambda = 1$) and endogenous monetary policy ($\phi > 0$).

consumers. The ensuing reduction in relative money demand implies an excess supply of domestic currency and, thereby, a nominal depreciation of the exchange rate. This is the familiar implication of the Redux model. Allowing for an endogenous component in monetary policy is not enough to qualitatively affect the result derived by Obstfeld and Rogoff (1995).

The second scenario is the one analyzed by Ganelli (2005a), in which public consumption is fully home biased ($\lambda = 0$). In this scenario, the specific assumption about monetary policy is key to understand the exchange-rate response to fiscal shocks. If monetary policy is exogenous – i.e. $\phi = 0$, as in Ganelli (2005a) – it is straightforward to see that neither the GG

$$\hat{\epsilon} = \frac{\theta(1 + \beta)}{(1 - \beta)} - \frac{1 - \beta}{(\theta^2 - 1)} (\hat{c} - \hat{c}^*)$$ \hspace{1cm} (29)$$

nor the MM

$$\hat{\epsilon} = (\mu - \mu^*) - (\hat{c} - \hat{c}^*)$$ \hspace{1cm} (30)$$

respond to fiscal shocks. As a consequence, a temporary expansion in domestic public consumption does not have any effect on the nominal exchange rate. This is the quasi-neutrality result derived in Ganelli (2005a): with full home bias in public consumption and exogenous
monetary policy, the expansion in public spending falls entirely on domestic goods, and the implied tax burden is borne entirely by domestic consumers. As a consequence, domestic and foreign consumption do not react, and the exchange rate neither depreciates nor appreciates. The only variable on which the fiscal shock is not neutral is domestic output, which increases with a unitary multiplier, with no spillover to the current account or foreign output.

If instead monetary policy is endogenous ($\phi > 0$) the implication is radically different. Indeed, while the GG schedule is still (29), equilibrium in the money market is now described by the following MM:

$$\hat{e} = \frac{\mu - \mu^* - (\hat{c} - \hat{c}^*)}{1 + \theta \phi} - \frac{\phi(1 - \beta)}{\beta + (1 - \beta)(1 + \theta \phi)} (\hat{g} - \hat{g}^*).$$ \hspace{1cm} (31)

The asymmetric response of real output, indeed, triggers an asymmetric endogenous response of monetary policy as well, which reduces relative money supply, thereby implying a nominal exchange-rate appreciation. This is captured, in Figure 2, by a downward shift in the MM schedule.

A scenario in which public spending is fully home biased and monetary policy has an en-
A temporary expansion in domestic government spending, with incomplete home bias (0 < λ < 1) and endogenous monetary policy (φ > 0).

The endogenous feedback component, therefore, reverses the result of the Redux model and restores the basic insight of the Mundell-Fleming model, according to which an increase in public spending determines an exchange rate appreciation.

In the general case of incomplete home bias in public consumption and endogenous monetary policy, described by equations (19) and (25), both transmission mechanisms discussed so far are simultaneously at work, as displayed by Figure 3. The GG schedule shifts upwards, the more so the less home-biased public consumption (the higher λ), and the MM downwards, the more so the more endogenous monetary policy (the higher φ). Whether the equilibrium response of the exchange rate implies a depreciation or an appreciation depends therefore on the relative importance of the two additional features that we added to the Redux model.

To explore the implications of our generalized Redux model, Figure 4 plots the equilibrium change in the nominal exchange rate for a calibrated economy, for different values of the two key parameters: λ and φ. The calibration of β is consistent with an annualized steady state interest rate of 4%, while the price-elasticity of brand-specific demands is taken from Rotemberg and Woodford(1997): θ = 7.66. The qualitative implication of Figure 4 is robust to alternative calibrations of β and θ.
analysis: the more home-biased public spending and the more endogenous monetary policy, the more a temporary fiscal expansion implies an appreciation of the nominal exchange rate. Interestingly, however, looking at the contour lines at the base of the plot (in particular the orange line starting from the origin) reveals that most of the surface is below the zero plane, suggesting that moderate degrees of home bias in public consumption and endogenous response of monetary policy to the cycle, are sufficient to reverse the implication of the Redux model, and restore the Mundell-Fleming result that a temporary fiscal expansion appreciates the nominal exchange rate.

3 A DSGE Two-Country Model

In this section we present the general model extending the simple framework of the previous sections along three important dimensions. First, in the modern NOEM and DNK tradition, we add nominal rigidities in the form of a Calvo (1983) price-setting mechanism.\footnote{See, among others, Benigno (2004) and Galí and Monacelli (2005).} Second, we characterize monetary policy as the control of a short-term interest rate through a Taylor-
type feedback rule. Third, in order to be able to analyze a broader range of fiscal shocks and compare our results with existing literature, we also break Ricardian equivalence through a perpetual-youth structure of the demand side of the economy. The general model is therefore a two-country OLG economy, along the lines of Di Giorgio and Nisticò (2007, 2008).

The world economy consists of a continuum of households and firms in the interval [0, 1], divided in two countries H and F, of dimension n and $(1 - n)$ respectively. The two countries are structurally symmetric. Each domestic household belonging to cohort j supplies labor inputs (N) to firms and demands both domestic and imported consumption goods, collected in an unbiased bundle:

$$ C_t(j) = \left[n^{\frac{1}{2}} C_{H,t}(j)^{\frac{\theta}{\theta - 1}} + (1 - n)^{\frac{1}{2}} C_{F,t}(j)^{\frac{\theta}{\theta - 1}} \right]^{\frac{\theta}{\theta - 1}}. \quad (32) $$

The productive sector produces a continuum of perishable goods, which are differentiated across countries (with elasticity of substitution $\theta > 0$) and with respect to one another (with elasticity of substitution $\epsilon > 1$). Both domestic and foreign firms face, each period, an exogenous probability of optimally changing the price of their good (see Calvo, 1983), and are subject to the law of one price. The joint assumption of unbiased consumption bundles and the law of one price implies purchasing power parity:

$$ P_t = E_t P^*_t, \quad (33) $$

where E denotes the nominal exchange rate defined as the domestic price of foreign currency.

The demand-side of the economy is a discrete-time stochastic version of the perpetual youth model introduced by Blanchard (1985) and Yaari (1965). Each period, in each country, a constant share γ of traders in the financial markets are randomly replaced by newcomers with zero-financial wealth; from that period onward, these newcomers start trading in the financial markets and face a constant probability γ of being replaced as the next period begins. For a thorough discussion of this mechanism, see Castelnovo and Nisticò (2008), and Nisticò (2011). Consumers have log-utility preferences over consumption and leisure, supply labor services in a domestic competitive labor market and demand consumption goods. Moreover, they allocate savings among a full set of domestic state-contingent private securities and two internationally traded riskless financial assets issued in the two currencies by the governments to finance their budget deficits. Each consumer in each country is endowed with an equal amount of non-tradable shares of the domestic firms.

The solution of the optimization problem of domestic and foreign households delivers a set of cohort-specific equilibrium conditions which, once aggregated across cohorts, describe

16Symmetric relations hold for the foreign country, with appropriate asterisks.
17For a thorough discussion of this mechanism, see Castelnovo and Nisticò (2008), and Nisticò (2011).
the aggregate labor supply18

\[\delta P_t C_t = W_t (1 - N_t), \]

(34)

where \(W \) denotes the nominal wage, and the dynamic path of aggregate consumption

\[C_t = \sigma E_t \left\{ \mathcal{F}_{t,t+1} \frac{P_{t+1}}{P_t} \right\} \Omega_t + \frac{1}{\beta} E_t \left\{ \mathcal{F}_{t,t+1} \frac{P_{t+1}}{P_t} C_{t+1} \right\} \]

(35)

in which \(\mathcal{F}_{t,t+1} \) denotes the stochastic discount factor, \(\Omega_t \) the financial wealth in real terms, and the first term captures the financial wealth effect on consumption, which is increasing in the turnover rate \(\gamma \):

\[\sigma \equiv \gamma \frac{1 - \beta (1 - \gamma)}{\beta (1 - \gamma)}. \]

This additional term with respect to the RA set up is a direct implication of the random replacement of a fraction of traders in the financial market with newcomers holding zero-wealth. Indeed, the interaction between long-time traders with accumulated wealth and newcomers holding zero financial wealth drives a wedge between the equilibrium stochastic discount factor and the \textit{average} marginal rate of intertemporal substitution in consumption. In fact, while the cohort-specific Euler equation is the same as in the Representative Agent setup, because of the insurance mechanism \textit{à la} Blanchard, their aggregation is not straightforward (as it is in the RA setup) because the composition of traders in the financial markets tomorrow will include newcomers entering with zero-wealth to replace a share of long-time traders. These newcomers will consume on average less than long-time traders because they will not have any accumulated wealth. Aggregation will therefore account for this difference by means of a wedge between the stochastic discount factor and the average marginal rate of substitution in consumption. Such wedge is proportional to the stock of financial wealth and creates a link between average consumption growth and the dynamics of financial wealth.

Notice that what drives the financial wealth effect is not the finiteness of individual agents’ planning horizon, because the effect of this feature is sterilized by the insurance mechanism \textit{à la} Blanchard. The financial wealth effect only appears in aggregate terms, and is truly implied by the presence of agents with zero-wealth and their interaction with long-time traders. This argument is crucial for the interpretation of the nature of parameter \(\gamma \), and its possible quantitative calibration. As the rate of replacement (\(\gamma \)) approaches zero the wealth effect fades away and the model converges to the RA set up.

Our baseline assumption with respect to fiscal policy is that the government of each

18For details on the features of the model and the derivation of individual and aggregate equilibrium conditions, see Di Giorgio and Nisticò (2008, 2013).
country consumes an exogenously given amount of domestic goods only:

\[G = \left(\frac{1}{n} \right)^{1/\epsilon} \int_0^n g(h) \frac{\epsilon - 1}{\epsilon} dh \]

\[G^* = \left(\frac{1}{1 - n} \right)^{1/\epsilon} \int_n^1 g^*(f) \frac{\epsilon - 1}{\epsilon} df \]

As a consequence, public demand for brands \(h \) and \(f \) is equal to:

\[g(h) = \left(\frac{p(h)}{P_H} \right)^{-\epsilon} G \]

\[g^*(f) = \left(\frac{p^*(f)}{P_F} \right)^{-\epsilon} G^* \]

The government of domestic country can finance its own consumption \(G_t \) by levying lump-sum taxes \(T_t \) to domestic households and by issuing nominal debt denominated in local currency \(B_{it} \), for \(i = H, F \). This implies the following budget constraint for the domestic fiscal authority, in real per-capita terms (let \(B \equiv B^n / P)\):

\[B_{H,t} = (1 + r_{t-1}) \frac{P_{t-1}}{P_t} B_{H,t-1} + Z_t, \]

(36)

where \(Z_t \) denotes the domestic real primary deficit, defined as

\[Z_t \equiv \frac{P_{H,t}}{P_t} G_t - T_t. \]

(37)

The supply side of the economy is standard in the New-Keynesian tradition. Firms have access to a stochastic linear technology, with country-specific productivity shock denoted by \(A_t \). Firms choose labor demand in a competitive labor market by minimizing their total real costs subject to the technological constraint.

In equilibrium, the real marginal cost for the two countries will be

\[MC_t = \frac{\delta C_t}{A_t - Y_t \Xi_t} \left[n + (1 - n)S_{t-1}^{1-\theta} \right]^{1/\theta} \]

(38)

\[MC^*_t = \frac{\delta C^*_t}{A^*_t - Y^*_t \Xi^*_t} \left[nS_t^{1-1-\theta} + (1 - n) \right]^{1/\theta}, \]

(39)

in which \(S \) denotes the terms of trade and \(\Xi \) and \(\Xi^* \) capture (second-order) relative price dispersion among firms of country \(H \) and \(F \), respectively. Such firms set output prices according to Calvo’s (1983) staggering mechanism – with \(1 - \vartheta (1 - \vartheta^*) \) being the probability

\(^{19}\)This is the benchmark specification of public spending in most recent NOEM literature, see among others Corsetti and Pesenti (2001), Benigno (2004) and Beetsma and Jensen (2005). We will later compare the implications of such specification with those of the case in which, as in Obstfeld and Rogoff (1995) and Ganelli (2005b), public consumption is uniformly distributed across domestic and imported goods.
for each firm in country H (F) to optimally adjust its price. In equilibrium, this assumption implies a set of familiar New Keynesian Phillips Curves.

3.1 The Linear Model.

We analyze a first-order approximation of the model’s equilibrium conditions around a zero-inflation/zero-deficit steady state. Let $x_t \equiv \log X_t - \log X$ denote the log-deviation of variable X from its steady state, except $g_t \equiv \frac{G_t}{Y} \log(G_t/G)$, $\tau_t \equiv \frac{T_t}{Y} \log(T_t/T)$, and z_t, ω_t, and $b_{i,t}$ which, given the assumption of zero-primary deficit in steady state, we define as $z_t \equiv Z_t/C$, $\omega_i \equiv \Omega_i/C$ and $b_{i,t} \equiv B_{i,t}/C$. Moreover, let $x^W \equiv nx^H + (1 - n)x^F$ denote world aggregates and $x^R \equiv x^H - x^F$ denote H relative aggregates. We also set $s_t \equiv Y/C$.

Our model economy can be summarized by the following linear equations. An aggregate labor supply relates each country’s hours worked to domestic consumption and the real wage:

$$c_t + \varphi n_t = w_t - p_t,$$

where φ is the inverse Frisch-elasticity of labor supply. Nominal interest rates are linked through a standard Uncovered Interest-rate Parity (UIP) condition

$$E_t \Delta c_{t+1} = r_t - r_t^*,$$

which, coupled with the Law of One Price and unbiased consumption bundles, implies

$$r_t - E_t \pi_{t+1} = r_t^* - E_t \pi_t^*,$$

in which $\pi_t \equiv \log(P_t/P_{t-1})$ and $\pi_t^* \equiv \log(P_t^*/P_{t-1}^*)$ are the CPI-based inflation rate for country H and F, respectively.

Net foreign assets α, expressed in terms of country H’s position, evolve as a function of consumption differential and the terms of trade:

$$\alpha_t = \frac{1}{\beta} \alpha_{t-1} + (\theta - 1)(1 - n)s_t - (1 - n)c_t^R.$$

The dynamics of net foreign assets with respect to the terms of trade are the result of two competing effects. On the one side, a depreciation of s_t deteriorates the current account because it reduces the real value of domestic production, relative to absorption (negative absorption effect: $-(1 - n)s_t$). On the other side, a deterioration of the terms of trade makes domestic goods more competitive in the international markets, and imply a switch towards home goods and a consequent improvement in net foreign asset holdings (positive
switching effect: \(\theta(1-n)s_t \). As long as Home and Foreign goods are substitute in the utility of consumers \((\theta > 1)\) the positive switching effect dominates and a deterioration of the terms of trade implies a current account surplus.

Let \(\pi_{i,t} \equiv \log(P_{i,t}/P_{i,t-1}) \) denote the PPI-based inflation rate for country \(i \). The terms of trade, then, evolve according to:

\[
s_t = s_{t-1} + \Delta c_t + \pi_{F,t} - \pi_{H,t}.
\] (44)

Public debt, in country \(H \), follows the linearized law of motion:

\[
b_{H,t} = \frac{1}{\beta} b_{H,t-1} + z_t,
\] (45)

where the real primary deficit equals:

\[
z_t = s_c(g_t - \pi_t) - (s_c - 1)(1-n)s_t
\] (46)

The state equations for domestic, world and relative consumption read:

\[
c_t = E_t c_{t+1} - (r_t - E_t \pi_{t+1} - \varrho) + \sigma \beta \omega_t
\] (47)

\[
c_t^W = E_t c_{t+1}^W - (r_t^W - E_t \pi_{t+1}^W - \varrho) + \sigma \omega_t^W
\] (48)

\[
c_t^R = E_t c_{t+1}^R + \sigma b_t^R + \frac{\sigma}{1-n} \alpha_t
\] (49)

in which \(\varrho \) is the steady-state real interest rate, and relative public debt evolves according to

\[
b_t^R = \frac{1}{\beta} b_{t-1}^R + z_t^R.
\]

On the supply side, Calvo price-setting implies two NKPC of the usual kind:

\[
\pi_{H,t} = \beta E_t \pi_{H,t+1} + \zeta mc_t,
\] (50)

\[
\pi_{F,t} = \beta E_t \pi_{F,t+1} + \zeta^* mc_t^*,
\] (51)

in which \(\zeta \equiv \frac{(1-\vartheta)(1-\beta \vartheta)}{\varrho} \), \(\zeta^* \equiv \frac{(1-\vartheta^*)(1-\beta \vartheta^*)}{\varrho^*} \), and the real marginal costs, expressed in terms of aggregate and relative variables, follow:

\[
mc_t = \frac{s_c + \varphi}{s_c} c_t^W + (1-n)c_t^R + (1-n)\frac{s_c + \varphi \theta}{s_c} s_t + \varphi g_t - (1+\varphi)a_t
\] (52)

\[
mc_t^* = \frac{s_c + \varphi}{s_c} c_t^W - nc_t^R - n\frac{s_c + \varphi \theta}{s_c} s_t + \varphi g_t^* - (1+\varphi)a_t^*.
\] (53)
3.2 Parameterization

We parameterize the model on a quarterly frequency, following previous studies and convention, and consistently with Di Giorgio and Nisticò (2013). Specifically, the steady-state net quarterly interest rate ϱ was set at 0.01, implying a long-run real annualized interest rate of 4%.20 The rate of replacement γ was set equal to 0.1, consistently with the evidence for the U.S. recently provided, in a related framework, by Castelnuovo and Nisticò (2010). In order to meet the steady-state restrictions, the intertemporal discount factor β was set at 0.99. The degree of monopolistic competition is taken from Rotemberg and Woodford (1997), $\epsilon = 7.66$, which implies an average markup of 15%. In line with estimates provided for the U.S. by Smets and Wouters (2007), we set the Calvo parameter at 0.75, implying that prices are revised on average once a year. Parameter s_c was set equal to 1.25, implying a ratio of public consumption to output of about 20%. As to the steady-state Frisch elasticity of labor supply, $1/\varphi$, there is wide controversy about the value that should be assigned to this parameter. The empirical microeconomic literature suggests values for φ ranging from .1 to .5 (see Card, 1994, for a survey), while business cycle literature mostly uses values greater than 1 (see e.g. Cooley and Prescott, 1995). We choose a baseline value of $\varphi = 0.5$, consistently with the microevidence. The elasticity of substitution between Home and Foreign goods was set equal to $\theta = 1.5$, which implies that home and foreign goods are substitute in the utility function of consumers. Finally, we parameterize the dimension of the Home country n to 0.6, roughly consistent with the ratio of the U.S. GDP to the one of the Euro-10.

Table 1: Stochastic properties of the productivity shocks.

<table>
<thead>
<tr>
<th>Shock</th>
<th>P_a</th>
<th>σ_a</th>
<th>corr(u_a, u_{a}^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.723</td>
<td>-0.067</td>
<td>0.0062</td>
</tr>
<tr>
<td></td>
<td>(11.142)</td>
<td>(-0.765)</td>
<td></td>
</tr>
<tr>
<td>a^*</td>
<td>0.214</td>
<td>0.608</td>
<td>0.0041</td>
</tr>
<tr>
<td></td>
<td>(4.976)</td>
<td>(10.544)</td>
<td></td>
</tr>
</tbody>
</table>

As to the stochastic shocks, we allow for international propagation of productivity shocks and therefore assume that they evolve as a stationary VAR(1) process: $a_t = P_a a_{t-1} + u_{a_t}$, where $a \equiv [a \ a^*]'$. To calibrate persistence and volatilities, we estimate the VAR using quarterly HP-filtered data on labor productivity in the U.S. and the Euro Area for the period

20Since we focus on a symmetric steady state the values reported in the text are meant to refer to both countries as well as to the world economy.
Table 2: Stochastic properties of the fiscal shocks.

<table>
<thead>
<tr>
<th>Shock</th>
<th>ρ_g</th>
<th>σ_g</th>
<th>$Adj.R^2$</th>
<th>Shock</th>
<th>ρ_τ</th>
<th>σ_τ</th>
<th>$Adj.R^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>0.692</td>
<td>0.0066</td>
<td>0.4674</td>
<td>τ</td>
<td>0.768</td>
<td>0.0192</td>
<td>0.5802</td>
</tr>
<tr>
<td></td>
<td>(11.164)</td>
<td></td>
<td></td>
<td></td>
<td>(14.008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g^*</td>
<td>0.638</td>
<td>0.0041</td>
<td>0.4159</td>
<td>τ^*</td>
<td>0.905</td>
<td>0.0105</td>
<td>0.8181</td>
</tr>
<tr>
<td></td>
<td>(10.056)</td>
<td></td>
<td></td>
<td></td>
<td>(25.269)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

spanning from 1970:1 to 2005:4.21 The values obtained are reported in Table 1 (t-statistics in parenthesis).

As the table shows, we find significant evidence of an international stochastic relation between productivity in the U.S. and the Euro Area, and a small positive correlation between the innovations.

Analogously, to calibrate persistence and volatility of the fiscal shocks ($g_t = \rho_g g_{t-1} + u_{g,t}$ and $\tau_t = \rho_\tau \tau_{t-1} + u_{\tau,t}$), we estimate an independent AR(1) process for each shock, using quarterly HP-filtered data on government consumption and real personal taxes in the U.S. and the Euro Area for the available sample (1970:1 to 2005:4). The values obtained are reported in Table 2.

Given the structural symmetry of our framework, we follow Backus, Kehoe and Kydland (1992), among the others, and use for the benchmark simulation a symmetrized version of our estimates. We therefore calibrate matrix P_a to

$$P_a = \begin{bmatrix} 0.665 & 0.074 \\ 0.074 & 0.665 \end{bmatrix},$$

(54)

the standard deviations of productivity shocks at $\sigma_a = \sigma_a^* = 0.0056$ and the correlation at the estimated value (0.0910). As to the fiscal shocks, we calibrate $\rho_g = \rho_g^* = 0.665$, $\sigma_g = \sigma_g^* = 0.0054$, $\rho_\tau = \rho_\tau^* = 0.836$ and $\sigma_\tau = \sigma_\tau^* = 0.0148$.

21See Di Giorgio and Nisticò (2013) for a discussion. Data for the Euro Area are taken from the Area-Wide Model Database, Labour Productivity, series ID: LPROD. Data for the U.S. are constructed, for consistency with the corresponding series for the Euro Area, as real GDP over employment, using data from the Federal Reserve Economic Data, FRB of St Louis, series ID: GDPC96 (for real GDP) and CE16OV (for employment). The Area-Wide Model Database is available to EABCN members at http://www.eabcn.org/data/awm/index.htm. For a description of this database, see Fagan et al. (2005).
3.3 Fiscal Shocks, Endogenous Policy and the Exchange Rate

In this section we study the dynamic response of the economy to fiscal shocks, and focus particularly on the role of endogenous monetary and fiscal policy in shaping the short-run and long-run response of the exchange rate.

As to economic policy, we assume in each country the presence of two policy makers: a Central Bank and a fiscal authority. The former sets the domestic nominal interest rate and the latter either public consumption or the level of domestic taxes.\(^{22}\)

Monetary policy follows a simple instrument rule of the kind introduced by Taylor (1993), where the nominal interest rate responds to deviations of the GDP deflator \(\pi_{H,t}\) and the domestic output gap from the zero targets:

\[
 r_t = \varrho + \phi_\pi \pi_{H,t} + \phi_x x_t + u_{m,t},
\]

in which \(u_{m,t}\) are white noises capturing pure monetary policy shocks. In the simulation analysis below, we study different parameterizations for the response coefficients, to assess the role of endogenous policy on the exchange-rate response to fiscal shocks. As baseline calibration for the response coefficients and the volatility of monetary policy shocks, we use the estimates provided for the U.S. and the Euro Area by Smets and Wouters (2003, 2007):

\[
 \phi_\pi = 2.040, \quad \phi_x = 0.080, \quad \phi_x^* = 1.688, \quad \phi_x^* = 0.095, \quad \sigma_m = \sigma_m^* = 0.0016.
\]

As to fiscal policy, we consider several alternative specifications, focusing only on “passive” (in the sense of Leeper, JME 1991) or implementable (in the sense of Schmitt-Grohe and Uribe, 2006) fiscal rules. The first specification considers the case in which the government targets a balanced budget in every period:

\[
 z_t = 0.
\]

In this case, an increase in public consumption is, financed through an equivalent increase in domestic taxes.

Given the non-Ricardian structure of our model, we can also analyze alternative fiscal regimes which do not imply a balanced budget in every period. In particular, one alternative regime has real taxes follow an exogenous, stationary autoregressive process:

\[
 \tau_t = \rho_\tau \tau_{t-1} + (1 - \rho_\tau) \xi_b b_{t-1} + u_{z,t},
\]

where a drift adjusting to the stock of outstanding debt insures equilibrium determinacy \((\xi_b = (\varrho/s_c))\) and fiscal solvency. In this regime, therefore, an increase in public consumption

\(^{22}\)In the following, we assume that the foreign authorities behave symmetrically.
is financed through new debt.

The third specification considers the case in which governments set their primary deficit following a counter-cyclical feedback rule of the kind:

\[z_t = -\mu_b b_{t-1} - \mu_x x_t + u_{z,t}, \]

(58)

This specification was analyzed by recent empirical and theoretical literature (see Galí and Perotti, 2003 and Di Giorgio and Nisticò, 2013), and encompasses different fiscal regimes, depending on the specific values for the response coefficients.

If the response coefficients on the output gap are zero and those on the stock of debt as low as needed to ensure determinacy, this fiscal rule corresponds to a passive fiscal regime like (57), and, therefore, an increase in public consumption is simply and entirely financed through new debt.

Non-zero response coefficients, on the other hand, imply that the fiscal regime actively reacts to the business cycle and the dynamics of the public debt, potentially affecting the transmission mechanism of any kind of shock. In this scenario, we calibrate the response coefficients using the estimates provided by Galí and Perotti (EP, 2003) for the period 1992-2001.\(^23\) We identify the U.S. as the \(H\) country and the group of EMU10 as the \(F\) country: \(\mu_x = 1.07, \mu_x^* = 0.27, \mu_b^* = 0.043\). As to the Home response to the existing stock of debt, \(\mu_b\), we consider two alternative degrees of fiscal discipline (“low” and “high”). “Low” fiscal discipline implies a policy rule in which the response coefficient to the stock of outstanding debt is set at a level slightly higher than the one necessary to grant solvency and determinacy: \(\mu_b = 1.5\rho\). This calibration implies a response coefficient to existing debt of about .015, and is consistent with the estimates of Galí and Perotti (EP, 2003) for many OECD countries and with the estimate provided by Favero and Monacelli (2005) for the U.S. for the 90’s.\(^24\) As “High” degree of fiscal discipline we consider \(\mu_b = 15\rho\), which implies a response of about .15, and is consistent with the evidence of countries with a virtuous debt dynamics like Australia.

3.3.1 The Dynamic Response to Fiscal Shocks

Here we evaluate the dynamic effects of a wide range of fiscal policy shocks, and compare the implications for the exchange rate with those discussed in the related literature.

First, in Figures 5 and 6 we examine the effects of a balanced-budget expansion in public

\(^{23}\)The empirical analysis in Galí and Perotti (2003) also provides estimates for the 1980-1991 period, which show that in the ’80s the response coefficients \((\mu_x, \mu_b^*)\) for the U.S. where both insignificant. This case broadly corresponds to the fiscal regime that we labeled TX.

\(^{24}\)The estimate that Galí and Perotti (EP, 2003) report for the U.S. is actually not significantly different from zero, over the whole 1980-2001 sample.
consumption. When government spending is home biased, an increase in \(g \) tends to raise marginal costs at home relatively more than abroad (equations (52)–(53)), thereby triggering an increase in relative interest rates to offset the inflationary pressures. This results in a short-run appreciation of the nominal exchange rate, which worsens the external position. As a consequence, relative consumption falls (equation (49)). In our setting, therefore, the final short-run effect on relative consumption and net foreign assets are the same as in Ganelli (2005b) and Obstfeld–Rogoff (1995), while the effects on the exchange rate are reversed. This effects are shown by the solid lines in Figure 5.

This difference in results, as shown analytically in a simplified version of this model in Section 2, is due to the joint presence of home-biased public consumption and endogenous monetary policy. To isolate the effects of these two additional assumptions, relative to Obstfeld–Rogoff (1995), the dashed line in Figure 5 displays the dynamic response of our economy when monetary policy is exogenous in real terms, meaning that the real interest rate does not respond to either inflation, nor the output gap.\(^{25}\)

The dashed line in Figure 5, indeed, confirms the results derived in the simple model

\(^{25}\)This corresponds to calibrating \(\phi_{\pi} = 1 \) and \(\phi_{x} = 0 \), in equation (55). In order for the rational expectation equilibrium to be determinate, we cannot impose a fully exogenous monetary policy, i.e. a nominal interest-rate peg. Notice, however, that a nominal interest-rate peg is not necessary to characterize exogenous monetary policy in this framework, as both inflation and real activity respond to the real interest rate.
of Section 2: when monetary policy is exogenous and government spending is fully biased towards domestic products, the nominal exchange rate does not move at all in the short-run, in response to a balanced-budget fiscal shock. This is also the quasi-neutrality result discussed in Ganelli (2005a), where however, the key role of exogenous monetary policy was not identified.

Notice that the higher inflationary pressures induced in the home country sets the domestic price level on a higher path relative to foreign one. In the long-run, accordingly, when both inflation rates are back to zero, this difference in the price levels remains and is responsible for the permanent depreciation of the nominal exchange rate.

Figure 6 shows the role played by the composition of public consumption. The solid line shows the response to a balanced-budget increase in government spending, when the latter is fully biased towards domestically-produced goods, as in Ganelli (2005a), while the dashed line corresponds to the case discussed in Obstfeld–Rogoff (1995) and Ganelli (2005b), in which public consumption is uniformly distributed across all goods produced in the international economy. The top-right panel of Figure 6 displays the result: if government spending is uniformly distributed across domestic and foreign goods, the exchange rate depreciates in the short run, while it appreciates in the long-run.

Although this is the same result as in the Redux model, the transmission mechanism is radically different. In Obstfeld–Rogoff (JPE, 1995) an increase in public consumption crowds
out consumption both at home and abroad; however, since monetary policy is exogenous and the fiscal expansion is financed by an increase of domestic taxes only, domestic consumption falls more than foreign one, and the ensuing excess supply of money is higher at home than abroad. The exchange rate therefore depreciates. In our DNK model, instead, the transmission mechanism works through marginal costs. An increase in public spending that is directed towards both home and foreign goods has positive effects on the marginal costs of both countries. However, since the fiscal expansion is financed by an increase in domestic taxes only, domestic consumption falls more than foreign one, and the ensuing excess supply of money is higher at home than abroad. The exchange rate therefore depreciates. In our DNK model, instead, the transmission mechanism works through marginal costs. An increase in public spending that is directed towards both home and foreign goods has positive effects on the marginal costs of both countries. However, since the fiscal expansion is financed by an increase in domestic taxes only, domestic consumption falls more than foreign one and relative consumption therefore falls. Equations (52)–(53) then imply that foreign marginal costs increase more than domestic ones, triggering a relatively stronger response by foreign monetary policy. Contrary to the case of home-biased public spending, therefore, the relative interest rate falls, thereby depreciating the exchange rate.26 This result, as shown in the simple model of Section 2, is independent, from a qualitative perspective, on the assumption on whether monetary policy is endogenous or not.

The long-run effects on the nominal exchange rate also depend on the degree of home bias in government consumption. If public spending is completely home-biased, the on-impact increase in relative marginal costs sets domestic prices on a higher path, which in the long-run translates into a permanently depreciated exchange rate. On the contrary, if public spending is uniformly distributed across domestic and foreign goods, the relative marginal costs actually fall, as discussed above. The domestic price level therefore jumps on a lower path, which in the long-run translates into a permanently appreciated exchange rate.

All the effects discussed so far are clearly independent of the overlapping-generation structure of our DNK model, since the balanced-budget specification of the fiscal expansions considered does not have any effect on the accumulation of public debt and therefore does not trigger wealth effects any different from the representative-agent case. Our overlapping-generation structure, however, allows us to use our framework to simulate also other kinds of fiscal shocks, and study in particular the response of the exchange rate.

Using a perpetual-youth version of the Redux model, Ganelli (2005b) argues that the effects on the exchange rate of an increase in public spending depend on how the expansion is financed: a balanced-budget (tax-financed) expansion would imply an on-impact depreciation through a reduction in relative consumption and an increase in domestic prices, while the effects of a debt-financed expansion would be ambiguous because a tax-cut tends to appreciate the exchange rate on impact. This result follows directly from the assumption that public expenditure is uniformly distributed over domestic and foreign goods, so that an increase in

26 As shown by the other panels in Figure 6, relative to the case of home-biased public spending, the weaker inflationary pressures that arise in the home country translate into a lower actual inflation rate, a milder increase in the domestic interest rate and, thereby, a higher output gap.
public expenditure acts as a global demand shock.

In our framework with complete home bias, a debt-financed expansion in public consumption unambiguously induces an appreciation of the nominal exchange rate on impact and a depreciation in the transition, as shown by Figure 7.

This result is independent of the specification of fiscal policy, whether it is completely exogenous and real taxes follow (57) – dashed line in the figure – or it cares about the business cycle and the stock of debt, by adjusting the primary deficit according to (58) – solid line.27

Notice that, again, endogenous monetary policy plays an important role in shaping the response of the exchange rate to fiscal shocks. This is shown by Figure 8, where fiscal policy follows the feedback rule of equation (58). When monetary policy is exogenous, indeed, the quasi-neutrality result holds and there is no short-run response of the exchange rate to a tax cut. Under endogenous monetary policy, however, the exchange rate appreciates unambiguously.28

A debt-financed increase in government spending is equivalent to the combination of a balanced-budget fiscal expansion (Figures 5 and 6) and a tax cut. The latter is analyzed

27In the case of exogenous fiscal policy, moreover, the long-run response of the exchange rate is a stronger depreciation, as it also reflects the accumulation of net foreign liabilities implied by the lack of fiscal discipline.

28Notice that in this case, the specification of monetary policy also affects the long-run response of the exchange rate: under endogenous monetary policy the long-run exchange rate depreciates, as before, while it appreciates when monetary policy is exogenous.
Figure 8: Response of selected variables to a 1% increase in public spending. Solid line: endogenous monetary policy. Dashed line: exogenous monetary policy.

In Figure 9 under different fiscal regimes. The dashed line shows the dynamic response when fiscal policy is completely exogenous, and real taxes follow (57), while the solid line shows the case in which fiscal policy adjusts the primary deficit according to the feedback rule of equation (58). In both scenarios, a tax cut induces a fiscal deficit and the issuance of new debt to finance it. On impact, the world and relative stocks of outstanding debt increase, as well as world and relative consumption, through wealth effects. The increase in relative consumption then induces upward pressures on relative marginal costs, which require an increase in relative nominal interest rates and the ensuing appreciation in the nominal exchange rate.

It is now straightforward why a debt-financed expansion in public spending unambiguously appreciates the exchange rate: both a balanced-budget expansion in public consumption and a tax cut induce an appreciation. Under the commonly used assumption of home biased government consumption and endogenous monetary policy, therefore, it is possible to perfectly reconcile the NOEM implications with the traditional Mundell-Fleming result: a fiscal expansion leads to an appreciation of the exchange rate on impact regardless of how this expansion is financed.
4 Concluding Remarks

This paper studies how the exchange rate responds to fiscal shocks. We first show that in a generalized version of the Redux model, the effects of fiscal shocks on the exchange rate critically depend on the degree of home bias in public spending and on the endogeneity of monetary policy. When government consumption is uniformly distributed across domestic and foreign goods, - as in the original Obstfeld and Rogoff (1995) paper - an increase in domestic public spending leads to an exchange rate depreciation. On the other hand, when government consumption is completely home-biased, the exchange rate appreciates if monetary policy is endogenous. If the fiscal expansion is financed by taxes, domestic and foreign consumption do not react. Domestic output increases, inducing a reduction in money supply and, therefore, a nominal exchange-rate appreciation.

We then investigate exchange rate dynamics following fiscal shocks in a fully developed two-country DSGE model where Ricardian equivalence does not hold and monetary policy is conducted via Taylor rules. Our simulations confirm the previous results that the exchange rate appreciates following a home-biased fiscal expansion. We also show that this result holds regardless of how the fiscal expansion is financed. The transmission mechanism works through a change in relative marginal costs. A domestic fiscal shock triggers an increase in relative interest rates to offset the inflationary pressures, leading to a short-run appreciation.
of the nominal exchange rate.

We conclude that proper consideration of the two commonly used new keynesian assumptions - home bias in government consumption and endogenous monetary policy - leads to fully reconcile, in terms of exchange rate response to fiscal shocks, the NOEM model with the traditional view of Mundell-Fleming.
References

Gali, Jordi and Tommaso Monacelli. (2005) “Monetary Policy and Exchange Rate Volatil-
ity in a Small Open Economy.”* Review of Economic Studies, 72*, pp. 707-734.

